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ABSTRACT

In this study, quantitative texture analysis of HRCT lung images was performed using MaZda software to
classify and compare Tubular Bronchiectasis, COPD, Hydropneumothorax, Pleural Effusion,
Hypersensitivity Pneumonitis, and Interstitial Lung Disease (ILD) with normal lung tissue. A total of 127
samples obtained from 41 patients were analyzed to ensure broad representation across diagnostic
categories. More than 300 texture features were extracted from selected Regions of Interest (ROIs), and
the POE+ACC method was used to identify the ten most discriminative features. These selected features
were evaluated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and
Nonlinear Discriminant Analysis (NDA). All three methods achieved 0% misclassification error,
demonstrating excellent feature stability and reproducibility. LDA showed strong linear clustering, NDA
produced superior nonlinear discrimination using a one-class Artificial Neural Network (ANN), and PCA
effectively visualized class variance and consistent grouping. The results confirm that MaZda-based texture
analysis offers an accurate, objective, and non-invasive tool capable of distinguishing a wide range of
pulmonary diseases using HRCT, supporting radiological decision-making and improving diagnostic
precision.
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1. Introduction

The lungs primarily function as the organ of gas exchange between alveoli and blood and also contribute to
immune defense and metabolic homeostasis through particle clearance and enzymatic neutralization of
biological agents [1]. Chronic lung diseases remain major causes of global morbidity and mortality, arising
from multifactorial contributors such as smoking, environmental pollution, and occupational exposures
[2]. Chronic Obstructive Pulmonary Disease (COPD) is a progressive disorder characterized by airflow
limitation and structural remodeling of the airways, with emphysema and chronic bronchitis representing
its dominant phenotypes [3]. Tubular bronchiectasis involves irreversible dilatation of bronchi due to
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chronic infection or inflammation, leading to mucus retention, recurrent infections, and persistent cough
[4]. Interstitial lung diseases (ILDs) represent a broad category of diffuse parenchymal abnormalities that
may progress to fibrosis, impaired diffusion capacity, and respiratory failure [5]. Hypersensitivity
pneumonitis (HP) results from repeated inhalation of immunogenic particles and is characterized by
interstitial inflammation, ground-glass opacities, and fibrosis in chronic stages [6]. Pleural effusion
involves the accumulation of excess fluid in the pleural cavity and often causes dyspnea and chest
discomfort, whereas hydropneumothorax comprises simultaneous air and fluid in the pleural space, posing
risks of respiratory compromise [7].

High-Resolution Computed Tomography (HRCT) is the primary imaging modality for detailed evaluation
of lung and pleural abnormalities because it acquires thin-section (~1.0—1.5 mm) images with higher spatial
resolution than conventional CT, enabling early visualization of airway changes, interstitial thickening,
parenchymal destruction, nodules, pleural collections, and fibrotic patterns that are often not detectable on
standard imaging [8]. Over the last decade, HRCT radiomics has emerged as a powerful technique for
quantifying subtle texture patterns that may reflect microstructural changes in lung tissue, offering reliable
biomarkers for diagnosis, prognosis, and disease phenotyping [9].

In computer vision, texture analysis is fundamental for medical image interpretation, pattern recognition,
defect detection, and quantitative morphological assessment. Statistical texture analysis methods evaluate
the distribution of pixel intensities to characterize underlying tissue structure objectively [10]. Based on the
number of pixels used in computation, texture methods are classified into first-order (single-pixel
statistics), second-order (relationships between pixel pairs), and higher-order (patterns among three or
more pixels). First-order statistics quantify global intensity properties such as mean and variance, whereas
second- and higher-order statistics capture spatial interactions between neighboring pixels, enabling richer
description of tissue heterogeneity.

Machine learning has become integral to medical image analysis because it enables automated pattern
recognition and enhances diagnostic precision through data-driven learning [11]. Radiomics-based
classifiers such as neural networks, linear discriminant analysis, and nonlinear discriminant algorithms
have been increasingly used to detect subtle disease-specific texture patterns on HRCT. MaZda software is
a widely used platform for quantitative biomedical texture analysis, offering extraction of hundreds of
features from multiple statistical families, including histogram, GLCM, run-length, gradient, and
autoregressive features. Its feature selection tools, such as Probability of Classification Error + Average
Correlation Coefficient (POE+ACC), reduce redundancy and identify the most discriminative radiomic
descriptors for disease classification.

Despite increasing use of HRCT radiomics in pulmonary imaging, most prior studies have focused on single
disease entities or limited disease groups and have rarely applied a unified texture-analysis and feature-
selection framework across multiple pulmonary and pleural disorders. In particular, there is a lack of
comparative evaluation of linear and nonlinear discriminant classifiers using robust MaZda-based radiomic
features. This methodological gap limits the generalizability and clinical translation of existing radiomics
models. The present study addresses this gap by applying a standardized MaZda-based texture-analysis
pipeline with POE+ACC feature selection and comparative PCA, LDA, and ANN-based NDA classification
across a broad spectrum of lung and pleural diseases.

2. Materials and Methods

A total of 127 samples were obtained from 41 patients with clinically and radiologically diagnosed lung
diseases for texture analysis. The patients (aged 20—80 years, male and female) were diagnosed with COPD
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(including emphysema and chronic bronchitis), tubular bronchiectasis, pleural effusion,
hydropneumothorax, hypersensitivity pneumonitis, and interstitial lung disease. HRCT scans were
acquired using an AQ-Prime CT scanner (Serial No. BCA1492054) at the Radiology Department of Sadiq
Abbasi Hospital, Bahawalpur. Patients younger than 20 years and those with lung malignancies, metastatic
disease, active tuberculosis, granulomatous infections, or a history of thoracic surgery were excluded. All
DICOM images were converted into Bitmap format using MicroDicom software for texture extraction in
MaZda.

2.1. Region of Interest (ROI) and Feature Extraction

The first step involved importing, formatting, and preparing digital HRCT images for texture analysis.
Regions of Interest (ROIs) were manually selected from diagnostically relevant locations to ensure
meaningful feature extraction and reduce unnecessary computational load [10].

Both first-order and second-order statistics were evaluated. First-order statistics (histogram features)
quantify pixel-intensity distribution without considering spatial relationships. Second-order statistics,
derived from the Gray Level Co-occurrence Matrix (GLCM), quantify spatial dependencies and remain
widely used for lung texture characterization due to their ability to capture heterogeneity and structural
distortion [11].

Additional features included Run-Length Matrix (RLM/GLRLM) for coarseness and fineness, gradient-
based features for edge behaviour, and autoregressive (AR) features that model pixel intensities as functions
of neighbouring patterns. To reduce acquisition-related variability, +30 intensity normalization was applied
to each ROI, a method proven effective in stabilizing radiomic features across heterogeneous data sets [12].

2.2. Feature Selection and Dimensionality Reduction

Feature selection was performed using the Probability of Classification Error + Average Correlation
Coefficient (POE+ACC) method, which identifies features with the lowest classification error and minimal
redundancy. Recent radiomics studies have shown that POE+ACC improve classification accuracy by
retaining only the most discriminative features for lung disease analysis [13].

2.3. Feature Classifiers

Selected features were analysed using Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), and Nonlinear Discriminant Analysis (NDA). LDA enhances linear class separation and has
demonstrated high accuracy in HRCT texture-based lung disease classification. NDA, implemented with a
one-class Artificial Neural Network (ANN), captures nonlinear boundaries and has been shown to improve
classification in complex radiomics datasets [14]. Whereas PCA provides unsupervised dimensionality
reduction by projecting features onto components representing the largest variance in the data.

2.4. Feature Analysis

PCA, LDA, and NDA were applied to the ten POE+ACC-selected features to evaluate their discriminative
ability. PCA assisted in variance visualization, LDA provided linear separation between disease classes, and
NDA further captured nonlinear separability.
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2.5. Analytical Framework
CT Image Acquisition
ROI Selection
Image Normalization

Feature Extraction

Feature Selecction

Texture Classification
K-NN 1-NIN
Classifiers classifiers
CNDA

Figure 1 Workflow of Texture Analysis from Image Acquisition to Classification

The POE+ACC feature selection method was adopted to determine the ten most discriminative features.
The ACC component removed highly correlated features, while the POE component minimized
misclassification probability. Together, these ensured strong class discrimination and reliable outcomes.
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Figure 2 PCA, LDA, and NDA showing clear separation between normal and
diseased lung tissues

Tubular Bronchiectasis is often a secondary structural manifestation of COPD. Chronic airway
inflammation and mucus retention in COPD cause permanent bronchiolar dilation and airway wall
thickening, leading to bronchiectasis changes. Hence, the presence of tubular bronchiectasis commonly
reflects chronic airway obstruction and remodeling associated with COPD, a relationship also highlighted
in recent HRCT-radiomics studies [16]. In this combination, Tubular Bronchiectasis (COPD) was compared
with normal lung tissue using texture features extracted from HRCT images in MaZda. Following feature
extraction, the Probability of Classification Error + Average Correlation Coefficient (POE+ACC) method
was applied to select the ten most discriminative texture features for optimal separation between diseased
and normal tissues. These selected features were subsequently used as input for dimensionality reduction
and classification using Linear Discriminant Analysis (LDA), Nonlinear Discriminant Analysis (NDA), and
Principal Component Analysis (PCA) methods.

3. Results

The LDA achieved 0.00% misclassification error, showing perfect linear separation between the two classes
as shown in Figure 2(a). The red cluster (Tubular Bronchiectasis/COPD) and green cluster (Normal) were
completely separated along the MDF1 axis, confirming that the selected features were highly effective for
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linear classification. Using a one-class Artificial Neural Network (ANN), the NDA achieved 0%
misclassification error. This demonstrates that NDA could capture subtle nonlinear texture variations,
providing stronger class discrimination than LDA, consistent with recent machine-learning evaluations of
COPD and bronchiectasis radiomics [17], as shown in Figure 2(b). PCA transformed all ten input features
into six principal components and achieved 0% misclassification error. This indicates that although PCA
retained the majority of data variance, it offered weaker class distinction since it is unsupervised, as shown
in Figure 2(c). Overall, all three methods achieved perfect classification accuracy, with LDA and NDA
showing superior discriminatory ability, confirming the reliability of POE+ACC-selected features.

Hydropneumothorax and Pleural Effusion were analyzed together because both involve pleural space
abnormalities characterized by fluid and/or air accumulation. On HRCT, these conditions show similar
pleural-based density changes and fluid-air interfaces, producing comparable texture patterns that justify
their combined analysis. For this combination, I compared Hydropneumothorax and Pleural Effusion
against Normal lung tissue. The POE+ACC method was again used to select the ten most effective features
with the highest discriminatory capability between diseased and normal regions. These selected features
were processed using LDA, NDA, and PCA for comparative analysis.

The LDA achieved 0.00% misclassification error, indicating strong linear separability between the pleural
diseases and the normal lung. The clusters were distinct with minimal overlap, confirming the
discriminative power of the selected features as shown in Figure 2(e). The one-class ANN used in NDA
produced 0% misclassification error. The nonlinear network effectively captured the differences in texture
distribution caused by fluid and air accumulation in pleural regions, providing perfect classification, in line
with recent pleural-space radiomics literature [18], as shown in Figure 2(f). PCA achieved 0%
misclassification error. Although the PCA plot showed some degree of overlap due to its unsupervised
nature, it still successfully separated diseased and normal cases, reflecting consistent textural differences
as shown in Figure 2(g). All three methods, LDA, NDA, and PCA, achieved 100% classification accuracy,
but NDA and LDA demonstrated more effective discrimination between pleural diseases and normal lung
tissue. The combination of POE+ACC-selected features and the ANN-based NDA model confirmed that
texture analysis can accurately characterize pleural abnormalities.

Hypersensitivity Pneumonitis and Interstitial Lung Disease were analyzed together because both represent
interstitial lung involvement characterized by fibrosis, ground-glass opacities, and diffuse parenchymal
changes. Their overlapping pathological and radiological features on HRCT produce similar texture
patterns, supporting their combined evaluation. In this combination, I analyzed Hypersensitivity
Pneumonitis (HP) and Interstitial Lung Disease (ILD) against Normal lung tissue. Texture features were
extracted and refined using the POE+ACC method, which selected the ten features with the highest
potential for class separation. These were then used for LDA, NDA, and PCA classification.

The LDA method achieved 0.00% misclassification error, showing that the two classes were completely
linearly separable. The resulting LDA plot showed clear clustering, with red points (HP + ILD) entirely
distinct from green points (Normal) as shown in Figure 2(h). The NDA classifier, built using a one-class
ANN, achieved perfect classification (0% misclassification error). This indicates that NDA effectively
captured the complex nonlinear texture differences present in interstitial lung abnormalities, similar to
recent radiomics-based ILD and HP classification reports [19], providing maximum separation accuracy as
shown in Figure 2(i). PCA produced 0% misclassification error. Although PCA successfully grouped
diseased and normal regions separately, some feature overlap was noted due to its unsupervised nature. It
still effectively represented the texture variance between both classes as shown in Figure 2(j). These results
confirmed that all three classifiers provided 100% correct classification, with LDA and NDA showing the
strongest separation. The success of POE+ACC feature selection and one-class ANN analysis validates the
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robustness of the extracted texture parameters in differentiating interstitial lung disease from normal
parenchyma.

4. Discussion

The present study demonstrates that quantitative radiomics texture analysis of HRCT lung images—
performed using the MaZda platform—can accurately differentiate a wide spectrum of pulmonary and
pleural diseases, including Tubular Bronchiectasis (COPD-related), Hydropneumothorax with Pleural
Effusion, and Hypersensitivity Pneumonitis with Interstitial Lung Disease (ILD). Extraction of more than
300 texture features from carefully selected ROIs enabled comprehensive characterization of parenchymal
and pleural heterogeneity. The use of the POE+ACC feature selection method significantly improved model
efficiency by identifying the most discriminative and least redundant texture features, consistent with
contemporary radiomics optimization and feature-stability studies in pulmonary imaging[20].

Across all disease groups, the classification results obtained using PCA, LDA, and NDA indicated
exceptional separability between normal and pathological lung tissues. The perfect (0.00%)
misclassification rate achieved by LDA highlights the strong linear separability of POE+ACC-selected
texture features for patterns associated with COPD-related airway distortion, pleural air—fluid
abnormalities, and interstitial parenchymal disease. This observation is in agreement with recent radiomics
investigations demonstrating that LDA continues to perform exceptionally well in structured HRCT
radiomic datasets for COPD phenotyping, pleural disease characterization, and ILD differentiation [21].

NDA, implemented using a one-class artificial neural network (ANN), further enhanced nonlinear
discrimination. Its perfect classification performance suggests the presence of complex, non-linear texture
alterations in both pleural and interstitial lung diseases—particularly in ILD and hypersensitivity
pneumonitis—where fibrosis, heterogeneous ground-glass attenuation, and reticular distortion generate
higher-order spatial dependencies. ANN-based classifiers have been repeatedly reported to outperform
classical statistical and shallow machine-learning approaches in detecting subtle interstitial abnormalities
and in differentiating ILD subtypes on HRCT and chest radiography datasets [22]. The strong performance
of NDA in this study reinforces the suitability of ANN-driven models for capturing subtle heterogeneity-
driven disease signatures that are not fully separable using linear transformations alone.

Although PCA is an unsupervised method, it also achieved 0% misclassification error, indicating that the
disease classes possessed intrinsically distinct radiomic signatures. However, visual inspection of the PCA
projections revealed comparatively weaker class separation than that observed with LDA and NDA. This
finding is consistent with recent HRCT radiomics literature, which consistently reports that PCA is highly
valuable for variance exploration and visualization but generally inferior to supervised discriminant
methods for definitive disease classification—particularly in conditions with overlapping radiographic
manifestations such as pleural disease and interstitial pathology[23].

Importantly, this work directly addresses a critical gap in existing pulmonary radiomics research. Previous
studies have typically examined isolated disease entities or limited diagnostic groups and often lacked
standardized pipelines for feature selection and classifier comparison. Moreover, few investigations have
systematically compared linear and nonlinear discriminant strategies using MaZda-derived texture features
across multiple pulmonary and pleural disorders. By integrating POE+ACC feature selection with PCA,
LDA, and ANN-based NDA within a single, unified analytical framework, the present study demonstrates
that both linear and nonlinear discriminative radiomic signatures can be robustly extracted from HRCT
data across diverse lung and pleural pathologies.
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Through this approach, the study advances methodological consistency in pulmonary HRCT radiomics and
provides evidence that MaZda-based texture analysis, when coupled with optimized feature selection and
advanced discriminant models, can serve as a reliable, objective, and non-invasive adjunct to conventional
radiological interpretation.

5. Conclusion

This study demonstrates that MaZda-based quantitative radiomics texture analysis of HRCT lung images
provides a reliable, objective, and non-invasive approach for differentiating a diverse range of pulmonary
and pleural diseases, including COPD-related airway abnormalities, pleural air—fluid pathologies, and
interstitial lung disease. The integration of POE+ACC feature selection with PCA, LDA, and ANN-based
NDA achieved perfect classification performance, underscoring the robustness and discriminative power of
the proposed radiomic pipeline. The strong performance of both linear and nonlinear classifiers highlights
the presence of distinct and complementary texture signatures across disease entities. These findings
support the role of optimized texture analysis as a valuable adjunct to conventional radiological assessment
and suggest its potential for enhancing diagnostic precision and decision support in clinical pulmonary
imaging.
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