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ABSTRACT 

In this study, quantitative texture analysis of HRCT lung images was performed using MaZda software to 

classify and compare Tubular Bronchiectasis, COPD, Hydropneumothorax, Pleural Effusion, 

Hypersensitivity Pneumonitis, and Interstitial Lung Disease (ILD) with normal lung tissue. A total of 127 

samples obtained from 41 patients were analyzed to ensure broad representation across diagnostic 

categories. More than 300 texture features were extracted from selected Regions of Interest (ROIs), and 

the POE+ACC method was used to identify the ten most discriminative features. These selected features 

were evaluated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and 

Nonlinear Discriminant Analysis (NDA). All three methods achieved 0% misclassification error, 

demonstrating excellent feature stability and reproducibility. LDA showed strong linear clustering, NDA 

produced superior nonlinear discrimination using a one-class Artificial Neural Network (ANN), and PCA 

effectively visualized class variance and consistent grouping. The results confirm that MaZda-based texture 

analysis offers an accurate, objective, and non-invasive tool capable of distinguishing a wide range of 

pulmonary diseases using HRCT, supporting radiological decision-making and improving diagnostic 

precision. 
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1. Introduction 

The lungs primarily function as the organ of gas exchange between alveoli and blood and also contribute to 

immune defense and metabolic homeostasis through particle clearance and enzymatic neutralization of 

biological agents [1]. Chronic lung diseases remain major causes of global morbidity and mortality, arising 

from multifactorial contributors such as smoking, environmental pollution, and occupational exposures 

[2]. Chronic Obstructive Pulmonary Disease (COPD) is a progressive disorder characterized by airflow 

limitation and structural remodeling of the airways, with emphysema and chronic bronchitis representing 

its dominant phenotypes [3]. Tubular bronchiectasis involves irreversible dilatation of bronchi due to 
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chronic infection or inflammation, leading to mucus retention, recurrent infections, and persistent cough 

[4]. Interstitial lung diseases (ILDs) represent a broad category of diffuse parenchymal abnormalities that 

may progress to fibrosis, impaired diffusion capacity, and respiratory failure [5]. Hypersensitivity 

pneumonitis (HP) results from repeated inhalation of immunogenic particles and is characterized by 

interstitial inflammation, ground-glass opacities, and fibrosis in chronic stages [6]. Pleural effusion 

involves the accumulation of excess fluid in the pleural cavity and often causes dyspnea and chest 

discomfort, whereas hydropneumothorax comprises simultaneous air and fluid in the pleural space, posing 

risks of respiratory compromise [7]. 

High-Resolution Computed Tomography (HRCT) is the primary imaging modality for detailed evaluation 

of lung and pleural abnormalities because it acquires thin-section (~1.0–1.5 mm) images with higher spatial 

resolution than conventional CT, enabling early visualization of airway changes, interstitial thickening, 

parenchymal destruction, nodules, pleural collections, and fibrotic patterns that are often not detectable on 

standard imaging  [8].  Over the last decade, HRCT radiomics has emerged as a powerful technique for 

quantifying subtle texture patterns that may reflect microstructural changes in lung tissue, offering reliable 

biomarkers for diagnosis, prognosis, and disease phenotyping [9]. 

In computer vision, texture analysis is fundamental for medical image interpretation, pattern recognition, 

defect detection, and quantitative morphological assessment. Statistical texture analysis methods evaluate 

the distribution of pixel intensities to characterize underlying tissue structure objectively [10]. Based on the 

number of pixels used in computation, texture methods are classified into first-order (single-pixel 

statistics), second-order (relationships between pixel pairs), and higher-order (patterns among three or 

more pixels). First-order statistics quantify global intensity properties such as mean and variance, whereas 

second- and higher-order statistics capture spatial interactions between neighboring pixels, enabling richer 

description of tissue heterogeneity.  

Machine learning has become integral to medical image analysis because it enables automated pattern 

recognition and enhances diagnostic precision through data-driven learning [11]. Radiomics-based 

classifiers such as neural networks, linear discriminant analysis, and nonlinear discriminant algorithms 

have been increasingly used to detect subtle disease-specific texture patterns on HRCT. MaZda software is 

a widely used platform for quantitative biomedical texture analysis, offering extraction of hundreds of 

features from multiple statistical families, including histogram, GLCM, run-length, gradient, and 

autoregressive features. Its feature selection tools, such as Probability of Classification Error + Average 

Correlation Coefficient (POE+ACC), reduce redundancy and identify the most discriminative radiomic 

descriptors for disease classification. 

Despite increasing use of HRCT radiomics in pulmonary imaging, most prior studies have focused on single 

disease entities or limited disease groups and have rarely applied a unified texture-analysis and feature-

selection framework across multiple pulmonary and pleural disorders. In particular, there is a lack of 

comparative evaluation of linear and nonlinear discriminant classifiers using robust MaZda-based radiomic 

features. This methodological gap limits the generalizability and clinical translation of existing radiomics 

models. The present study addresses this gap by applying a standardized MaZda-based texture-analysis 

pipeline with POE+ACC feature selection and comparative PCA, LDA, and ANN-based NDA classification 

across a broad spectrum of lung and pleural diseases. 

 

2. Materials and Methods 

A total of 127 samples were obtained from 41 patients with clinically and radiologically diagnosed lung 

diseases for texture analysis. The patients (aged 20–80 years, male and female) were diagnosed with COPD 
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(including emphysema and chronic bronchitis), tubular bronchiectasis, pleural effusion, 

hydropneumothorax, hypersensitivity pneumonitis, and interstitial lung disease. HRCT scans were 

acquired using an AQ-Prime CT scanner (Serial No. BCA1492054) at the Radiology Department of Sadiq 

Abbasi Hospital, Bahawalpur. Patients younger than 20 years and those with lung malignancies, metastatic 

disease, active tuberculosis, granulomatous infections, or a history of thoracic surgery were excluded. All 

DICOM images were converted into Bitmap format using MicroDicom software for texture extraction in 

MaZda. 

2.1. Region of Interest (ROI) and Feature Extraction 

The first step involved importing, formatting, and preparing digital HRCT images for texture analysis. 

Regions of Interest (ROIs) were manually selected from diagnostically relevant locations to ensure 

meaningful feature extraction and reduce unnecessary computational load [10]. 

Both first-order and second-order statistics were evaluated. First-order statistics (histogram features) 

quantify pixel-intensity distribution without considering spatial relationships. Second-order statistics, 

derived from the Gray Level Co-occurrence Matrix (GLCM), quantify spatial dependencies and remain 

widely used for lung texture characterization due to their ability to capture heterogeneity and structural 

distortion [11]. 

Additional features included Run-Length Matrix (RLM/GLRLM) for coarseness and fineness, gradient-

based features for edge behaviour, and autoregressive (AR) features that model pixel intensities as functions 

of neighbouring patterns. To reduce acquisition-related variability, ±3σ intensity normalization was applied 

to each ROI, a method proven effective in stabilizing radiomic features across heterogeneous data sets [12]. 

2.2. Feature Selection and Dimensionality Reduction 

Feature selection was performed using the Probability of Classification Error + Average Correlation 

Coefficient (POE+ACC) method, which identifies features with the lowest classification error and minimal 

redundancy. Recent radiomics studies have shown that POE+ACC improve classification accuracy by 

retaining only the most discriminative features for lung disease analysis [13]. 

2.3. Feature Classifiers 

Selected features were analysed using Principal Component Analysis (PCA), Linear Discriminant Analysis 

(LDA), and Nonlinear Discriminant Analysis (NDA). LDA enhances linear class separation and has 

demonstrated high accuracy in HRCT texture-based lung disease classification. NDA, implemented with a 

one-class Artificial Neural Network (ANN), captures nonlinear boundaries and has been shown to improve 

classification in complex radiomics datasets [14]. Whereas PCA provides unsupervised dimensionality 

reduction by projecting features onto components representing the largest variance in the data. 

2.4. Feature Analysis 

PCA, LDA, and NDA were applied to the ten POE+ACC-selected features to evaluate their discriminative 

ability. PCA assisted in variance visualization, LDA provided linear separation between disease classes, and 

NDA further captured nonlinear separability.  
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2.5. Analytical Framework 

Figure 1 Workflow of Texture Analysis from Image Acquisition to Classification 

The POE+ACC feature selection method was adopted to determine the ten most discriminative features. 

The ACC component removed highly correlated features, while the POE component minimized 

misclassification probability. Together, these ensured strong class discrimination and reliable outcomes. 
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       Figure 2 PCA, LDA, and NDA showing clear separation between normal and 
diseased lung tissues 

Tubular Bronchiectasis is often a secondary structural manifestation of COPD. Chronic airway 

inflammation and mucus retention in COPD cause permanent bronchiolar dilation and airway wall 

thickening, leading to bronchiectasis changes. Hence, the presence of tubular bronchiectasis commonly 

reflects chronic airway obstruction and remodeling associated with COPD, a relationship also highlighted 

in recent HRCT-radiomics studies [16]. In this combination, Tubular Bronchiectasis (COPD) was compared 

with normal lung tissue using texture features extracted from HRCT images in MaZda. Following feature 

extraction, the Probability of Classification Error + Average Correlation Coefficient (POE+ACC) method 

was applied to select the ten most discriminative texture features for optimal separation between diseased 

and normal tissues. These selected features were subsequently used as input for dimensionality reduction 

and classification using Linear Discriminant Analysis (LDA), Nonlinear Discriminant Analysis (NDA), and 

Principal Component Analysis (PCA) methods. 

 

3. Results  

The LDA achieved 0.00% misclassification error, showing perfect linear separation between the two classes 

as shown in Figure 2(a). The red cluster (Tubular Bronchiectasis/COPD) and green cluster (Normal) were 

completely separated along the MDF1 axis, confirming that the selected features were highly effective for 
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linear classification. Using a one-class Artificial Neural Network (ANN), the NDA achieved 0% 

misclassification error. This demonstrates that NDA could capture subtle nonlinear texture variations, 

providing stronger class discrimination than LDA, consistent with recent machine-learning evaluations of 

COPD and bronchiectasis radiomics [17], as shown in Figure 2(b). PCA transformed all ten input features 

into six principal components and achieved 0% misclassification error. This indicates that although PCA 

retained the majority of data variance, it offered weaker class distinction since it is unsupervised, as shown 

in Figure 2(c). Overall, all three methods achieved perfect classification accuracy, with LDA and NDA 

showing superior discriminatory ability, confirming the reliability of POE+ACC-selected features. 

Hydropneumothorax and Pleural Effusion were analyzed together because both involve pleural space 

abnormalities characterized by fluid and/or air accumulation. On HRCT, these conditions show similar 

pleural-based density changes and fluid-air interfaces, producing comparable texture patterns that justify 

their combined analysis. For this combination, I compared Hydropneumothorax and Pleural Effusion 

against Normal lung tissue. The POE+ACC method was again used to select the ten most effective features 

with the highest discriminatory capability between diseased and normal regions. These selected features 

were processed using LDA, NDA, and PCA for comparative analysis. 

The LDA achieved 0.00% misclassification error, indicating strong linear separability between the pleural 

diseases and the normal lung. The clusters were distinct with minimal overlap, confirming the 

discriminative power of the selected features as shown in Figure 2(e). The one-class ANN used in NDA 

produced 0% misclassification error. The nonlinear network effectively captured the differences in texture 

distribution caused by fluid and air accumulation in pleural regions, providing perfect classification, in line 

with recent pleural-space radiomics literature [18], as shown in Figure 2(f). PCA achieved 0% 

misclassification error. Although the PCA plot showed some degree of overlap due to its unsupervised 

nature, it still successfully separated diseased and normal cases, reflecting consistent textural differences 

as shown in Figure 2(g). All three methods, LDA, NDA, and PCA, achieved 100% classification accuracy, 

but NDA and LDA demonstrated more effective discrimination between pleural diseases and normal lung 

tissue. The combination of POE+ACC-selected features and the ANN-based NDA model confirmed that 

texture analysis can accurately characterize pleural abnormalities. 

Hypersensitivity Pneumonitis and Interstitial Lung Disease were analyzed together because both represent 

interstitial lung involvement characterized by fibrosis, ground-glass opacities, and diffuse parenchymal 

changes. Their overlapping pathological and radiological features on HRCT produce similar texture 

patterns, supporting their combined evaluation. In this combination, I analyzed Hypersensitivity 

Pneumonitis (HP) and Interstitial Lung Disease (ILD) against Normal lung tissue. Texture features were 

extracted and refined using the POE+ACC method, which selected the ten features with the highest 

potential for class separation. These were then used for LDA, NDA, and PCA classification. 

The LDA method achieved 0.00% misclassification error, showing that the two classes were completely 

linearly separable. The resulting LDA plot showed clear clustering, with red points (HP + ILD) entirely 

distinct from green points (Normal) as shown in Figure 2(h). The NDA classifier, built using a one-class 

ANN, achieved perfect classification (0% misclassification error). This indicates that NDA effectively 

captured the complex nonlinear texture differences present in interstitial lung abnormalities, similar to 

recent radiomics-based ILD and HP classification reports [19], providing maximum separation accuracy as 

shown in Figure 2(i). PCA produced 0% misclassification error. Although PCA successfully grouped 

diseased and normal regions separately, some feature overlap was noted due to its unsupervised nature. It 

still effectively represented the texture variance between both classes as shown in Figure 2(j). These results 

confirmed that all three classifiers provided 100% correct classification, with LDA and NDA showing the 

strongest separation. The success of POE+ACC feature selection and one-class ANN analysis validates the 
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robustness of the extracted texture parameters in differentiating interstitial lung disease from normal 

parenchyma. 

 

4. Discussion 

The present study demonstrates that quantitative radiomics texture analysis of HRCT lung images—

performed using the MaZda platform—can accurately differentiate a wide spectrum of pulmonary and 

pleural diseases, including Tubular Bronchiectasis (COPD-related), Hydropneumothorax with Pleural 

Effusion, and Hypersensitivity Pneumonitis with Interstitial Lung Disease (ILD). Extraction of more than 

300 texture features from carefully selected ROIs enabled comprehensive characterization of parenchymal 

and pleural heterogeneity. The use of the POE+ACC feature selection method significantly improved model 

efficiency by identifying the most discriminative and least redundant texture features, consistent with 

contemporary radiomics optimization and feature-stability studies in pulmonary imaging[20]. 

Across all disease groups, the classification results obtained using PCA, LDA, and NDA indicated 

exceptional separability between normal and pathological lung tissues. The perfect (0.00%) 

misclassification rate achieved by LDA highlights the strong linear separability of POE+ACC-selected 

texture features for patterns associated with COPD-related airway distortion, pleural air–fluid 

abnormalities, and interstitial parenchymal disease. This observation is in agreement with recent radiomics 

investigations demonstrating that LDA continues to perform exceptionally well in structured HRCT 

radiomic datasets for COPD phenotyping, pleural disease characterization, and ILD differentiation [21]. 

NDA, implemented using a one-class artificial neural network (ANN), further enhanced nonlinear 

discrimination. Its perfect classification performance suggests the presence of complex, non-linear texture 

alterations in both pleural and interstitial lung diseases—particularly in ILD and hypersensitivity 

pneumonitis—where fibrosis, heterogeneous ground-glass attenuation, and reticular distortion generate 

higher-order spatial dependencies. ANN-based classifiers have been repeatedly reported to outperform 

classical statistical and shallow machine-learning approaches in detecting subtle interstitial abnormalities 

and in differentiating ILD subtypes on HRCT and chest radiography datasets [22]. The strong performance 

of NDA in this study reinforces the suitability of ANN-driven models for capturing subtle heterogeneity-

driven disease signatures that are not fully separable using linear transformations alone. 

Although PCA is an unsupervised method, it also achieved 0% misclassification error, indicating that the 

disease classes possessed intrinsically distinct radiomic signatures. However, visual inspection of the PCA 

projections revealed comparatively weaker class separation than that observed with LDA and NDA. This 

finding is consistent with recent HRCT radiomics literature, which consistently reports that PCA is highly 

valuable for variance exploration and visualization but generally inferior to supervised discriminant 

methods for definitive disease classification—particularly in conditions with overlapping radiographic 

manifestations such as pleural disease and interstitial pathology[23]. 

Importantly, this work directly addresses a critical gap in existing pulmonary radiomics research. Previous 

studies have typically examined isolated disease entities or limited diagnostic groups and often lacked 

standardized pipelines for feature selection and classifier comparison. Moreover, few investigations have 

systematically compared linear and nonlinear discriminant strategies using MaZda-derived texture features 

across multiple pulmonary and pleural disorders. By integrating POE+ACC feature selection with PCA, 

LDA, and ANN-based NDA within a single, unified analytical framework, the present study demonstrates 

that both linear and nonlinear discriminative radiomic signatures can be robustly extracted from HRCT 

data across diverse lung and pleural pathologies. 
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Through this approach, the study advances methodological consistency in pulmonary HRCT radiomics and 

provides evidence that MaZda-based texture analysis, when coupled with optimized feature selection and 

advanced discriminant models, can serve as a reliable, objective, and non-invasive adjunct to conventional 

radiological interpretation. 

 

5. Conclusion 

This study demonstrates that MaZda-based quantitative radiomics texture analysis of HRCT lung images 

provides a reliable, objective, and non-invasive approach for differentiating a diverse range of pulmonary 

and pleural diseases, including COPD-related airway abnormalities, pleural air–fluid pathologies, and 

interstitial lung disease. The integration of POE+ACC feature selection with PCA, LDA, and ANN-based 

NDA achieved perfect classification performance, underscoring the robustness and discriminative power of 

the proposed radiomic pipeline. The strong performance of both linear and nonlinear classifiers highlights 

the presence of distinct and complementary texture signatures across disease entities. These findings 

support the role of optimized texture analysis as a valuable adjunct to conventional radiological assessment 

and suggest its potential for enhancing diagnostic precision and decision support in clinical pulmonary 

imaging. 
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