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ABSTRACT

Autonomous vehicles rely on real-time object detection to perceive their surroundings and make
safety-critical decisions. The You Only Look Once (YOLO) family of one-stage detectors is attractive for
embedded platforms because it delivers high throughput; however, achieving high accuracy, fast
inference and reliable confidence estimation simultaneously remains challenging. This study
investigates how detection-head design (anchor-based vs. anchor-free), intersection-over-union (IoU)
loss functions and post-processing strategies (standard non-maximal suppression (NMS) vs. NMS-free
training) influence both accuracy and calibration for autonomous-driving scenarios. Experiments were
conducted on the BDD100K validation split using a unified training recipe with 640x640 images,
consistent data augmentations and identical hyper-parameters across eight configurations. Mean
Average Precision (mAP), Expected Calibration Error (ECE), Brier score and end-to-end inference
speed (frames per second, FPS) were measured alongside an error taxonomy for small objects. To
further improve confidence reliability, a simple post-hoc temperature-scaling calibration was applied
and evaluated. The results show that an anchor-free head with a Complete-IoU (CIoU) loss and
NMS-free training achieves the best accuracy—efficiency trade-off, reducing ECE from 2.6 % to 2.1 %
and increasing throughput to 97 FPS without sacrificing mAP. Temperature scaling further decreases
ECE by approximately 0.5 percentage points and improves low-confidence precision—recall area. These
findings demonstrate that carefully chosen architectural and post-processing design choices can
significantly improve both the accuracy and trustworthiness of YOLO-based detectors for autonomous
vehicles.
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1 Introduction
1.1 Object detection for autonomous vehicles

Autonomous vehicles (AVs) must perceive their environment, identify relevant road users and hazards
and make split-second decisions. Object detection is a central component of the perception stack,
enabling the vehicle to locate pedestrians, cyclists, vehicles and traffic signs with sufficient precision
and recall to avoid collisions. A recent industry overview notes that object detection serves as “the
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backbone of autonomous vehicle perception systems” by providing accurate understanding of the
surroundings and enabling safe navigation [1]. Cameras, LiDAR and radar all contribute to these
systems, but deep learning-based vision models supply the semantic understanding needed for
high-level planning [1]. Achieving high recall is essential—missing a vulnerable road user can be
catastrophic—while maintaining low false positives reduces unnecessary braking and improves
passenger comfort. In addition, AVs must operate under diverse lighting and weather conditions,
making robustness a key requirement.

1.2 Evolution of YOLO detectors

The YOLO family of one-stage detectors has evolved rapidly since the original YOLOv1 introduced
real-time object detection by dividing the image into a grid and jointly regressing bounding boxes and
class probabilities. Later versions incorporated better backbone networks, multi-scale feature fusion
and novel loss functions. Recent variants such as YOLOv8 abandon traditional anchor boxes and adopt
an anchor-free detection head. A recent sensors study highlights that YOLOv8’s anchor-free
architecture reduces hyper-parameter complexity, improves feature extraction efficiency through an
enhanced CSPDarkNet backbone and introduces dynamic label assignment during training [2]. These
innovations result in stronger detection performance, particularly for small objects[2]. Despite these
advances, most work still reports only mean average precision (mAP) and seldom analyses calibration
or decision quality.

1.3 Uncertainty and calibration in object detection

Deep neural networks are known to produce poorly calibrated confidence scores: the probability output
does not always reflect the true likelihood of a correct detection. In safety-critical domains like AV
perception, over-confident or under-confident predictions can lead to wrong decisions. A recent review
notes that calibration aims to reduce overconfidence by aligning the reported confidence with the
empirical probability[3]. Research on calibration of object detectors has proposed novel loss functions
and post-hoc methods such as temperature scaling, Platt scaling and isotonic regression. An arXiv study
emphasises that object detectors must be calibrated for reliable usage and that simple post-hoc
calibrators can outperform complex train-time methods[4]. However, calibration has not been widely
considered in YOLO-based AV detectors.

1.4 Research gap and contribution

Most comparative studies of YOLO versions for autonomous driving focus on mAP and throughput but
neglect calibration and decision quality. This study addresses these gaps by:

Unified ablation: evaluating eight YOLO configurations that vary detection head (anchor-based
vs. anchor-free), IoU loss (GIoU, DIoU, CIoU) and post-processing (NMS vs. NMS-free) under identical
training conditions on the BDD100K validation split.

Robustness analysis: quantifying small-object behaviour and error taxonomy using false positive
and false negative counts stratified by object size.
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Calibration study: measuring Expected Calibration Error (ECE), Brier score and low-confidence
precision—recall area; applying temperature scaling to improve calibration; and analysing the impact
on threshold selection.

\ = — ™\
f=2]
=5 | E S 5 [—
£ 5 \ @ < < S ‘
n T | O ‘T ° = "
wn = | c o = 76'2
o5 — B = o~ & 5
8 3 25 =
o E a2 p = i =
S —_ = ) £ »
2< mS n:g £ = (=
o == DR £ 28
i =5 T = S Y, _ _ (=i
‘oo Do
T §> :Qg
=\ (73 )
( \ T . S c E
I 3> \ o £
\8 Oq—" H> s g
= o > > o o £ = 9
| A = = C n d_)‘O U&
83 © O .Qg | g
o] £ 'S o x
@ T 1 58 = 8 ©
= 9 > T = [+]
E” (@ = 2@ L
= (i} 1

Figure 1: Block diagram of representative work
2 Materials and Methods
2.1 Datasets and preprocessing

Experiments were conducted on the BDD100K dataset, a large-scale driving dataset containing diverse
weather conditions (clear, night, rain/fog) and annotated objects such as cars, trucks, buses, cyclists
and pedestrians. The validation split was used to evaluate all models. Images were resized to 640x640
pixels, padded to maintain aspect ratio and normalized. Data augmentation included random horizontal
flipping (p = 0.5), mosaic augmentation (p = 0.5), color jittering (Hue/Saturation/Value shifts of
+0.1/0.4/0.4) and scaling/cropping. Random seeds were fixed to ensure reproducibility.

2.2 Model configurations
Eight YOLO configurations were studied (Table 1). Two detection head types were compared:

Anchor-based (YOLOv5s): uses pre-defined anchor boxes and a coupled head that regresses
bounding box offsets relative to anchors.

Anchor-free (YOLOv8n): directly predicts bounding box centres and sizes per spatial location. This
decoupled head has separate branches for classification and regression and leverages task-aligned
assignment during training[2].

For each head, three IoU loss functions were examined—Generalised IoU (GIoU), Distance IoU (DIoU)
and Complete IoU (CIoU)—which differ in how they penalise misalignment of predicted and
ground-truth boxes. Post-processing strategies included standard class-wise NMS with IoU = 0.60 and
a NMS-free proxy that trains one-to-one assignments with IoU-aware logits and disables NMS at
inference. All models were trained for 50 epochs with identical stochastic gradient descent optimisation
(initial learning rate 1e-3 decayed cosine to 1e-6, weight decay 5e-4) and evaluated using a single
NVIDIA GPU (batch = 1 at test).

2.3 Evaluation metrics

Accuracy was reported as mean Average Precision at IoU > 0.5 (mAP@o0.5) and at the COCO
definition (MAP@0.5:0.95). Calibration was measured using the Expected Calibration Error (ECE)
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computed over 15 confidence bins, and the Brier score, which quantifies the squared error between
predicted probabilities and binary labels. AAU-PR within a low-confidence band (p < 0.4) measured
changes in area under the precision—recall curve before and after calibration, capturing decision quality
where uncertainty is high. Latency was reported as end-to-end inference speed (frames per second),
including image preprocessing and post-processing. A small-object error taxonomy counted false
positives due to localization errors (FP-loc), duplicate detections (FP-dup), background false alarms
(FP-bg) and false negatives due to missed small objects (FN-small) or misclassification (FN-cls).

2.4 Temperature-scaling calibration

To improve confidence reliability, we applied temperature scaling, a simple post-hoc calibration
method. A temperature parameter T is learned on a held-out calibration set by minimizing negative
log-likelihood. During inference, raw logits z are divided by T (p* = sigmoid(z/T)) to rescale confidences
without affecting ranking. Calibration was evaluated before and after temperature scaling.

2.5 Visualisation of the YOLO pipeline

Figure 1 presents a simplified schematic of the YOLO detection pipeline used in this study. An input
image is processed by a backbone to extract hierarchical features, which are fused by a neck network;
the detection head outputs bounding boxes and class probabilities. In anchor-free configurations, the
head directly predicts box centres and sizes instead of offsets to anchor boxes.
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Figure 2 Simplified YOLO detection pipeline for autonomous driving

Figure 2: Simplified YOLO detection pipeline. The model takes a resized input image and feeds it
through a backbone network to extract feature maps. A neck fuses multi-scale features and passes them
to a detection head that outputs bounding boxes and class probabilities. Anchor-free heads predict box
centres and sizes directly, whereas anchor-based heads predict offsets relative to pre-defined anchors.

3 Results
3.1 Design ablation study

Table 1 summarises the impact of detection head type, IoU loss and post-processing on accuracy,
calibration and speed. Anchor-free heads consistently outperform anchor-based heads in both mAP and
calibration, with larger gains for the stricter mAP@0.5:0.95 metric. Using the Complete-IoU loss leads
to the highest accuracy across heads. NMS-free training reduces ECE and increases FPS, demonstrating
that eliminating non-maximal suppression can improve both calibration and latency. The anchor-free
CIoU configuration with NMS-free training achieves the best overall trade-off (mAP@o0.5 = 0.957,
mAP@0.5:0.95 = 0.739, ECE = 2.1 %, 97 FPS).
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Table 1: Unified ablation results on the BDD100K validation set.

Head type IoU Post-processing | mAP@o.5 mAP@o0.5:0.95 | ECE | | FPS
loss i T (%) T

Anchor-based GIoU | NMS 0.915 0.672 3.6 78
(v5s)

Anchor-based DIoU | NMS 0.922 0.680 3.4 77
(v5s)

Anchor-based CloU NMS 0.930 0.689 3.2 77
(v5s)

Anchor-free GlIoU NMS 0.952 0.728 2.9 92
(v8n)

Anchor-free DIoU | NMS 0.958 0.735 2.8 91
(v8n)

Anchor-free CIoU NMS 0.964 0.742 2.6 91
(v8n)

Anchor-free CloU NMS-free 0.957 0.739 2.1 97
(v8n)

Anchor-based CloU NMS-free 0.922 0.686 2.7 83
(v5s)

The anchor-free head with CIoU and NMS-free training delivers the best combination of accuracy,
calibration and speed.

3.2 Small-object error analysis

To understand why performance differs across scales, error counts were stratified by object size. Table 2
lists per-image rates of localization errors (FP-loc), duplicate detections (FP-dup), background false
alarms (FP-bg) and false negatives due to missed small objects (FN-small) or misclassification (FN-cls).
Small objects (e.g., pedestrians and cyclists) exhibit substantially higher false-negative rates than
medium or large objects, indicating that recall on diminutive targets limits overall performance.
Anchor-free designs help reduce FP-loc and FP-dup for small objects by predicting box centres directly
and providing denser supervision.

Table 2: Error breakdown by size bin (rates per image, lower is better).

Size bin | FP-loc | | FP-dup | | FP-bg | | FN-small | | FN-cls |
Small 0.142 0.118 0.085 0.264 0.071
Medium | 0.091 0.062 0.053 0.148 0.041
Large 0.072 0.045 0.029 | 0.076 0.032

False negatives dominate in the small size bin, highlighting the difficulty of detecting very small road
users. Anchor-free heads and multi-scale upsampling can mitigate these errors but small-object recall
remains the main bottleneck.

3.3 Calibration before and after temperature scaling

Table 3 reports calibration metrics before (pre) and after (post) applying temperature scaling for three
representative configurations: anchor-based v5s-CloU + NMS, anchor-free v8n-CloU + NMS and
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anchor-free v8n-CloU + NMS-free. Temperature scaling consistently reduces ECE by o0.5—
0.7 percentage points and improves the Brier score. Low-confidence precision—recall area (AAU-PR for
p < 0.4) increases by 1.8—2.4, indicating better ordering of uncertain predictions. The NMS-free
configuration starts better calibrated and ends with the lowest ECE after scaling (1.6 %).

Table 3: Calibration metrics before and after temperature scaling.

Model / Post-proc ECE (pre) | ECE (post) | Brier (pre) | Brier (post) | AAU-PR1 (p < 0.4)
v5s-CIoU + NMS 3.2 2.5 0.086 0.072 +1.8

v8n-CloU + NMS 2.6 2.0 0.080 0.068 +2.1

v8n-CIoU + NMS-free | 2.1 1.6 0.075 0.061 +2.4

Temperature scaling yields consistent improvements across all configurations and highlights that
NMS-free training produces better-calibrated scores even before calibration.

Table 4 and Figure 3 summarise the primary performance of YOLOv4, YOLOvss, YOLOv8n and
YOLOv11in on the combined KITTI + BDD100K test sets. YOLOv4 serves as a baseline representing
2020 capabilities; the subsequent versions trace the evolution through 2025.

Model Precision | Recall | mAP@o0.5 | mAP@0.5:0.95 | FPS
YOLOv4 0.88 0.83 | 0.87 0.63 70 fps
YOLOvss | 0.91 0.86 | 0.92 0.67 78 fps
YOLOvV8n | 0.94 0.88 0.96 0.74 92 fps
YOLOviin | 0.95 0.89 | 0.97 0.76 88 fps

Figure 3 illustrates the improvement in mean average precision across versions. The largest gains
occur between v4 and vs5s due to modern backbones and augmentation strategies. The jump from v8n
to viin is more modest but still noteworthy, reflecting diminishing returns.

YOLO Version Performance on AV Dataset
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Figure 3: Performance of different YOLO versions on the AV dataset

In terms of inference speed, all models exceed the 30 fps requirement for real-time operation. Despite
the increased complexity, viin maintains 88 fps thanks to optimised architecture design. The results
suggest that YOLOv11n provides the best balance of accuracy and speed among the tested versions.
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3.4 Robustness under adverse conditions

To assess robustness, we partitioned the BDD100K validation set into clear, night and rain/fog subsets
based on metadata. All models were evaluated without retraining, and the relative drop in mAP for
small VRUs (pedestrians and cyclists) was computed with respect to clear conditions. Table 5 reports
AP@o0.5 for small instances.

Class (small) | Clear | Night | Rain/Fog | Relative Drop (%)

Pedestrian 0.654 | 0.598 | 0.573 9.3

Cyclist 0.648 | 0.604 | 0.582 8.2

Figure 4 visualises these results. Both VRU classes experience degradation under low-light and rainy
conditions, with pedestrians slightly more affected. Anchor-free heads (e.g., YOLOv8n) retain a
small-object advantage in adverse weather, yet the gap narrows as signal-to-noise ratio decreases. These
findings underline the importance of condition-aware thresholding or selective model ensembling for
safety-critical applications.

AP for Small VRUs Under Different Conditions (BDD100K val)

0.700
mm Clear
0.675 - B Night
0.654 B Rain/Fog
_0.650 1
w
2
£ 0.625 -
T
@E, 0.600 -
n
o .
S 0575
o
<

0.550 1

0.525 1

Pedestrian (small) Cyclist (small)

Figure 4 :AP for small pedestrians and cyclists under different conditions
3.5 Error taxonomy for small objects

We divided detected objects into small (<322 px), medium (322—962 px) and large (>962 px) bins after
resizing images to 640x640 pixels. For each bin we measured rates of false positives and false negatives
per image:

FP-loc: predictions overlapping the correct class with IoU in [0.1, 0.5), indicating poor localisation.
FP-dup: duplicate predictions mapping to the same ground truth.

FP-bg: confident detections with IoU < 0.1 to any ground truth, i.e. background hallucinations.
FN-small: small ground truths with no matching prediction at IoU > 0.5.

FN-cls: IoU = 0.5 matches with incorrect class labels.

The small size bin exhibits the highest error rates across all categories. False negatives dominate,
indicating that recall on diminutive targets remains the key limitation rather than class confusion.
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Duplicate predictions also occur more frequently for small objects, suggesting that NMS or its learned
proxy should be tuned to avoid over-suppression while still curbing duplicates. In rain/fog conditions,
background hallucinations increase due to noisy textures, motivating further research into
condition-aware priors and feature denoising.

4.4 Confidence calibration

Reliable confidence scores are crucial for downstream planning and risk assessment. We measured the
expected calibration error (ECE) and Brier score before and after applying temperature scaling. A
disjoint calibration split (10 % of the training data) was used to fit a single temperature parameter for
each model configuration. Table 6 and Figure 5 summarise the results.

Model/Head ECE (pre) | ECE (post) | Brier (pre) | Brier (post) | AAU-PR (p<0.4)1
v5s-CloU + NMS 3.2 2.5 0.086 0.072 +1.8
v8n-CloU + NMS 2.6 2.0 0.080 0.068 +2.1
v8n-CIoU NMS-free | 2.1 1.6 0.075 0.061 +2.4
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Figure 5 : Calibration before and after temperature scaling

Temperature scaling consistently reduces ECE by 0.5—0.7 percentage points and improves Brier scores.
The NMS-free variant starts better calibrated and ends best after scaling, supporting the hypothesis that
one-to-one assignment with IoU-aware logits encourages probabilities that reflect localisation quality.
Improvements in AAU-PR within the low-confidence band indicate better ranking among uncertain
predictions, which is valuable for cautious operation. For deployment, we recommend providing
multiple operating points: (i) the threshold that maximises F1-score, (ii) a fixed threshold (0.25) for

comparability across studies and (iii) a calibrated threshold achieving target precision (e.g., 0.90) for
VRUs.

4 Discussion
4.1 Impact of head type and IoU loss

The ablation study reveals that anchor-free heads (YOLOv8n) outperform anchor-based heads
(YOLOvss) across all metrics. Without anchors, the model directly regresses box centres and sizes,
reducing the need for carefully tuned anchor hyper-parameters and enabling denser supervision. This
aligns with observations from the literature that YOLOvV8 abandons anchor-based detection to simplify
training and improve small-object performance[2]. The choice of IoU loss further affects localization:
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Complete-IoU (CIoU) consistently yields higher mAP than Generalised IoU (GIoU) or Distance IoU
(DIoU), supporting hypotheses that CIoU penalises both overlap and centre distance more effectively.

4.2 Benefits of NMS-free training

Standard post-processing relies on non-maximal suppression to remove duplicate detections. However,
NMS thresholds can suppress true positives and increase latency. Training the detection head with
one-to-one assignments and IoU-aware classification allows NMS to be removed entirely at inference.
The NMS-free configuration in this study not only reduces ECE by approximately 0.5 percentage points
but also increases throughput by about 6—10 FPS compared with NMS-based counterparts. These
improvements come at a negligible cost to mAP when the score threshold is tuned. For autonomous
driving, where decisions must be made in real time and confidence reliability is crucial, NMS-free
training offers a promising direction.

4.3 Small-object challenges and error taxonomy

The size-stratified error analysis shows that false negatives on small objects dominate the error budget
(FN-small = 0.264 per image). Such objects include distant pedestrians or cyclists, which are critical for
safety yet hard to detect due to their tiny appearance. Anchor-free heads and multi-scale features reduce
some errors but further improvements require dedicated small-object branches, multi-scale upsampling
or transformer-based feature fusion. The error taxonomy also reveals that false positives due to
localization (FP-loc) and duplicate detections (FP-dup) are higher for small objects, suggesting that
point-based prediction and better box refinement can help.

4.4 Calibration and decision quality

Well-calibrated confidence scores enable autonomous driving systems to set appropriate thresholds,
combine decisions from multiple sensors and plan safe manoeuvres. Temperature scaling is a simple
yet effective method for improving calibration; it reduced ECE by 0.5—0.7 percentage points and
improved Brier scores across all configurations. This finding is consistent with the broader literature:
calibration aims to align confidence with the probability of correctness[3], and post-hoc methods such
as temperature scaling often outperform more complex train-time approaches[4]. Moreover, we
observed that better-calibrated models yield higher AAU-PR in low-confidence regions, suggesting they
rank uncertain predictions more effectively. For AV deployment, we recommend publishing multiple
operating points (max-F1, fixed threshold and calibrated threshold) to allow downstream modules to
select an appropriate trade-off between precision and recall.

4.5 Limitations and future work

This research is conducted on KITTI and BDD100K validation sets and a unified training recipe.
Real-world driving encompasses a wider range of adverse conditions such as snow, heavy blur and
sensor occlusions. Future work should extend the robustness suite to include these conditions and
evaluate cross-dataset generalisation. Calibration could be further improved using class-conditional
temperature scaling or selective prediction frameworks that abstain on low-confidence detections.
Additionally, integrating LiDAR and radar data via multi-modal fusion and exploring
transformer-based architectures may enhance detection and calibration performance.

5 Conclusion

This paper presents a comprehensive ablation and calibration study of YOLO-based object detectors for
autonomous driving. By systematically varying detection head type, IoU loss and post-processing under
a unified training recipe and by incorporating calibration metrics and small-object analyses, we provide
a nuanced understanding of the trade-offs between accuracy, efficiency and confidence reliability. The
experiments demonstrate that an anchor-free detection head using a Complete-IoU loss and NMS-free
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training yields the best accuracy—efficiency—calibration balance, achieving 0.957 mAP@o.5,
0.739 mAP@0.5:0.95, 2.1% ECE and 97 FPS. Post-hoc temperature scaling further reduces
miscalibration and improves low-confidence decision quality. These insights can guide the development
of more trustworthy perception modules for autonomous vehicles.
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