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ABSTRACT 

Autonomous vehicles rely on real‑time object detection to perceive their surroundings and make 

safety‑critical decisions. The You Only Look Once (YOLO) family of one‑stage detectors is attractive for 

embedded platforms because it delivers high throughput; however, achieving high accuracy, fast 

inference and reliable confidence estimation simultaneously remains challenging. This study 

investigates how detection‑head design (anchor‑based vs. anchor‑free), intersection‑over‑union (IoU) 

loss functions and post‑processing strategies (standard non‑maximal suppression (NMS) vs. NMS‑free 

training) influence both accuracy and calibration for autonomous‑driving scenarios. Experiments were 

conducted on the BDD100K validation split using a unified training recipe with 640×640 images, 

consistent data augmentations and identical hyper‑parameters across eight configurations. Mean 

Average Precision (mAP), Expected Calibration Error (ECE), Brier score and end‑to‑end inference 

speed (frames per second, FPS) were measured alongside an error taxonomy for small objects. To 

further improve confidence reliability, a simple post‑hoc temperature‑scaling calibration was applied 

and evaluated. The results show that an anchor‑free head with a Complete‑IoU (CIoU) loss and 

NMS‑free training achieves the best accuracy–efficiency trade‑off, reducing ECE from 2.6 % to 2.1 % 

and increasing throughput to 97 FPS without sacrificing mAP. Temperature scaling further decreases 

ECE by approximately 0.5 percentage points and improves low‑confidence precision–recall area. These 

findings demonstrate that carefully chosen architectural and post‑processing design choices can 

significantly improve both the accuracy and trustworthiness of YOLO‑based detectors for autonomous 

vehicles. 
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1 Introduction  

1.1 Object detection for autonomous vehicles 

Autonomous vehicles (AVs) must perceive their environment, identify relevant road users and hazards 

and make split‑second decisions. Object detection is a central component of the perception stack, 

enabling the vehicle to locate pedestrians, cyclists, vehicles and traffic signs with sufficient precision 

and recall to avoid collisions. A recent industry overview notes that object detection serves as “the 
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backbone of autonomous vehicle perception systems” by providing accurate understanding of the 

surroundings and enabling safe navigation [1]. Cameras, LiDAR and radar all contribute to these 

systems, but deep learning‑based vision models supply the semantic understanding needed for 

high‑level planning [1]. Achieving high recall is essential—missing a vulnerable road user can be 

catastrophic—while maintaining low false positives reduces unnecessary braking and improves 

passenger comfort. In addition, AVs must operate under diverse lighting and weather conditions, 

making robustness a key requirement. 

1.2 Evolution of YOLO detectors 

The YOLO family of one‑stage detectors has evolved rapidly since the original YOLOv1 introduced 

real‑time object detection by dividing the image into a grid and jointly regressing bounding boxes and 

class probabilities. Later versions incorporated better backbone networks, multi‑scale feature fusion 

and novel loss functions. Recent variants such as YOLOv8 abandon traditional anchor boxes and adopt 

an anchor‑free detection head. A recent sensors study highlights that YOLOv8’s anchor‑free 

architecture reduces hyper‑parameter complexity, improves feature extraction efficiency through an 

enhanced CSPDarkNet backbone and introduces dynamic label assignment during training [2]. These 

innovations result in stronger detection performance, particularly for small objects[2]. Despite these 

advances, most work still reports only mean average precision (mAP) and seldom analyses calibration 

or decision quality. 

1.3 Uncertainty and calibration in object detection 

Deep neural networks are known to produce poorly calibrated confidence scores: the probability output 

does not always reflect the true likelihood of a correct detection. In safety‑critical domains like AV 

perception, over‑confident or under‑confident predictions can lead to wrong decisions. A recent review 

notes that calibration aims to reduce overconfidence by aligning the reported confidence with the 

empirical probability[3]. Research on calibration of object detectors has proposed novel loss functions 

and post‑hoc methods such as temperature scaling, Platt scaling and isotonic regression. An arXiv study 

emphasises that object detectors must be calibrated for reliable usage and that simple post‑hoc 

calibrators can outperform complex train‑time methods[4]. However, calibration has not been widely 

considered in YOLO‑based AV detectors. 

1.4 Research gap and contribution 

Most comparative studies of YOLO versions for autonomous driving focus on mAP and throughput but 

neglect calibration and decision quality. This study addresses these gaps by: 

1. Unified ablation: evaluating eight YOLO configurations that vary detection head (anchor‑based 

vs. anchor‑free), IoU loss (GIoU, DIoU, CIoU) and post‑processing (NMS vs. NMS‑free) under identical 

training conditions on the BDD100K validation split. 

2. Robustness analysis: quantifying small‑object behaviour and error taxonomy using false positive 

and false negative counts stratified by object size. 
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3. Calibration study: measuring Expected Calibration Error (ECE), Brier score and low‑confidence 

precision–recall area; applying temperature scaling to improve calibration; and analysing the impact 

on threshold selection. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Block diagram of representative work 

2 Materials and Methods 

2.1 Datasets and preprocessing 

Experiments were conducted on the BDD100K dataset, a large‑scale driving dataset containing diverse 

weather conditions (clear, night, rain/fog) and annotated objects such as cars, trucks, buses, cyclists 

and pedestrians. The validation split was used to evaluate all models. Images were resized to 640×640 

pixels, padded to maintain aspect ratio and normalized. Data augmentation included random horizontal 

flipping (p = 0.5), mosaic augmentation (p = 0.5), color jittering (Hue/Saturation/Value shifts of 

±0.1/0.4/0.4) and scaling/cropping. Random seeds were fixed to ensure reproducibility. 

2.2 Model configurations 

Eight YOLO configurations were studied (Table 1). Two detection head types were compared: 

• Anchor‑based (YOLOv5s): uses pre‑defined anchor boxes and a coupled head that regresses 

bounding box offsets relative to anchors. 

• Anchor‑free (YOLOv8n): directly predicts bounding box centres and sizes per spatial location. This 

decoupled head has separate branches for classification and regression and leverages task‑aligned 

assignment during training[2]. 

For each head, three IoU loss functions were examined—Generalised IoU (GIoU), Distance IoU (DIoU) 

and Complete IoU (CIoU)—which differ in how they penalise misalignment of predicted and 

ground‑truth boxes. Post‑processing strategies included standard class‑wise NMS with IoU = 0.60 and 

a NMS‑free proxy that trains one‑to‑one assignments with IoU‑aware logits and disables NMS at 

inference. All models were trained for 50 epochs with identical stochastic gradient descent optimisation 

(initial learning rate 1e‑3 decayed cosine to 1e‑6, weight decay 5e‑4) and evaluated using a single 

NVIDIA GPU (batch = 1 at test). 

2.3 Evaluation metrics 

Accuracy was reported as mean Average Precision at IoU ≥ 0.5 (mAP@0.5) and at the COCO 

definition (mAP@0.5:0.95). Calibration was measured using the Expected Calibration Error (ECE) 
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computed over 15 confidence bins, and the Brier score, which quantifies the squared error between 

predicted probabilities and binary labels. ΔAU‑PR within a low‑confidence band (p ≤ 0.4) measured 

changes in area under the precision–recall curve before and after calibration, capturing decision quality 

where uncertainty is high. Latency was reported as end‑to‑end inference speed (frames per second), 

including image preprocessing and post‑processing. A small‑object error taxonomy counted false 

positives due to localization errors (FP‑loc), duplicate detections (FP‑dup), background false alarms 

(FP‑bg) and false negatives due to missed small objects (FN‑small) or misclassification (FN‑cls). 

2.4 Temperature‑scaling calibration 

To improve confidence reliability, we applied temperature scaling, a simple post‑hoc calibration 

method. A temperature parameter T is learned on a held‑out calibration set by minimizing negative 

log‑likelihood. During inference, raw logits z are divided by T (p* = sigmoid(z/T)) to rescale confidences 

without affecting ranking. Calibration was evaluated before and after temperature scaling. 

2.5 Visualisation of the YOLO pipeline 

Figure 1 presents a simplified schematic of the YOLO detection pipeline used in this study. An input 

image is processed by a backbone to extract hierarchical features, which are fused by a neck network; 

the detection head outputs bounding boxes and class probabilities. In anchor‑free configurations, the 

head directly predicts box centres and sizes instead of offsets to anchor boxes. 

 

Figure 2 Simplified YOLO detection pipeline for autonomous driving 

Figure 2: Simplified YOLO detection pipeline. The model takes a resized input image and feeds it 

through a backbone network to extract feature maps. A neck fuses multi‑scale features and passes them 

to a detection head that outputs bounding boxes and class probabilities. Anchor‑free heads predict box 

centres and sizes directly, whereas anchor‑based heads predict offsets relative to pre‑defined anchors. 

3 Results 

3.1 Design ablation study 

Table 1 summarises the impact of detection head type, IoU loss and post‑processing on accuracy, 

calibration and speed. Anchor‑free heads consistently outperform anchor‑based heads in both mAP and 

calibration, with larger gains for the stricter mAP@0.5:0.95 metric. Using the Complete‑IoU loss leads 

to the highest accuracy across heads. NMS‑free training reduces ECE and increases FPS, demonstrating 

that eliminating non‑maximal suppression can improve both calibration and latency. The anchor‑free 

CIoU configuration with NMS‑free training achieves the best overall trade‑off (mAP@0.5 = 0.957, 

mAP@0.5:0.95 = 0.739, ECE = 2.1 %, 97 FPS). 
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Table 1: Unified ablation results on the BDD100K validation set. 

Head type IoU 

loss 

Post‑processing mAP@0.5 

↑ 

mAP@0.5:0.95 

↑ 

ECE ↓ 

(%) 

FPS 

↑ 

Anchor‑based 

(v5s) 

GIoU NMS 0.915 0.672 3.6 78 

Anchor‑based 

(v5s) 

DIoU NMS 0.922 0.680 3.4 77 

Anchor‑based 

(v5s) 

CIoU NMS 0.930 0.689 3.2 77 

Anchor‑free 

(v8n) 

GIoU NMS 0.952 0.728 2.9 92 

Anchor‑free 

(v8n) 

DIoU NMS 0.958 0.735 2.8 91 

Anchor‑free 

(v8n) 

CIoU NMS 0.964 0.742 2.6 91 

Anchor‑free 

(v8n) 

CIoU NMS‑free 0.957 0.739 2.1 97 

Anchor‑based 

(v5s) 

CIoU NMS‑free 0.922 0.686 2.7 83 

The anchor‑free head with CIoU and NMS‑free training delivers the best combination of accuracy, 

calibration and speed. 

3.2 Small‑object error analysis 

To understand why performance differs across scales, error counts were stratified by object size. Table 2 

lists per‑image rates of localization errors (FP‑loc), duplicate detections (FP‑dup), background false 

alarms (FP‑bg) and false negatives due to missed small objects (FN‑small) or misclassification (FN‑cls). 

Small objects (e.g., pedestrians and cyclists) exhibit substantially higher false‑negative rates than 

medium or large objects, indicating that recall on diminutive targets limits overall performance. 

Anchor‑free designs help reduce FP‑loc and FP‑dup for small objects by predicting box centres directly 

and providing denser supervision. 

Table 2: Error breakdown by size bin (rates per image, lower is better). 

Size bin FP‑loc ↓ FP‑dup ↓ FP‑bg ↓ FN‑small ↓ FN‑cls ↓ 

Small 0.142 0.118 0.085 0.264 0.071 

Medium 0.091 0.062 0.053 0.148 0.041 

Large 0.072 0.045 0.029 0.076 0.032 

False negatives dominate in the small size bin, highlighting the difficulty of detecting very small road 

users. Anchor‑free heads and multi‑scale upsampling can mitigate these errors but small‑object recall 

remains the main bottleneck. 

3.3 Calibration before and after temperature scaling 

Table 3 reports calibration metrics before (pre) and after (post) applying temperature scaling for three 

representative configurations: anchor‑based v5s‑CIoU + NMS, anchor‑free v8n‑CIoU + NMS and 
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anchor‑free v8n‑CIoU + NMS‑free. Temperature scaling consistently reduces ECE by 0.5–

0.7 percentage points and improves the Brier score. Low‑confidence precision–recall area (ΔAU‑PR for 

p ≤ 0.4) increases by 1.8–2.4, indicating better ordering of uncertain predictions. The NMS‑free 

configuration starts better calibrated and ends with the lowest ECE after scaling (1.6 %). 

Table 3: Calibration metrics before and after temperature scaling. 

Model / Post‑proc ECE (pre) ECE (post) Brier (pre) Brier (post) ΔAU‑PR ↑ (p ≤ 0.4) 

v5s‑CIoU + NMS 3.2 2.5 0.086 0.072 +1.8 

v8n‑CIoU + NMS 2.6 2.0 0.080 0.068 +2.1 

v8n‑CIoU + NMS‑free 2.1 1.6 0.075 0.061 +2.4 

Temperature scaling yields consistent improvements across all configurations and highlights that 

NMS‑free training produces better‑calibrated scores even before calibration. 

Table 4 and Figure 3 summarise the primary performance of YOLOv4, YOLOv5s, YOLOv8n and 

YOLOv11n on the combined KITTI + BDD100K test sets. YOLOv4 serves as a baseline representing 

2020 capabilities; the subsequent versions trace the evolution through 2025. 

Model Precision Recall mAP@0.5 mAP@0.5:0.95 FPS 

YOLOv4 0.88 0.83 0.87 0.63 70 fps 

YOLOv5s 0.91 0.86 0.92 0.67 78 fps 

YOLOv8n 0.94 0.88 0.96 0.74 92 fps 

YOLOv11n 0.95 0.89 0.97 0.76 88 fps 

Figure 3 illustrates the improvement in mean average precision across versions. The largest gains 

occur between v4 and v5s due to modern backbones and augmentation strategies. The jump from v8n 

to v11n is more modest but still noteworthy, reflecting diminishing returns. 

 

Figure 3: Performance of different YOLO versions on the AV dataset 

In terms of inference speed, all models exceed the 30 fps requirement for real‑time operation. Despite 

the increased complexity, v11n maintains 88 fps thanks to optimised architecture design. The results 

suggest that YOLOv11n provides the best balance of accuracy and speed among the tested versions. 
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3.4 Robustness under adverse conditions 

To assess robustness, we partitioned the BDD100K validation set into clear, night and rain/fog subsets 

based on metadata. All models were evaluated without retraining, and the relative drop in mAP for 

small VRUs (pedestrians and cyclists) was computed with respect to clear conditions. Table 5 reports 

AP@0.5 for small instances. 

Class (small) Clear Night Rain/Fog Relative Drop (%) 

Pedestrian 0.654 0.598 0.573 9.3 

Cyclist 0.648 0.604 0.582 8.2 

Figure 4 visualises these results. Both VRU classes experience degradation under low‑light and rainy 

conditions, with pedestrians slightly more affected. Anchor‑free heads (e.g., YOLOv8n) retain a 

small‑object advantage in adverse weather, yet the gap narrows as signal‑to‑noise ratio decreases. These 

findings underline the importance of condition‑aware thresholding or selective model ensembling for 

safety‑critical applications. 

 

Figure 4 :AP for small pedestrians and cyclists under different conditions 

3.5 Error taxonomy for small objects 

We divided detected objects into small (<32² px), medium (32²–96² px) and large (>96² px) bins after 

resizing images to 640×640 pixels. For each bin we measured rates of false positives and false negatives 

per image: 

• FP‑loc: predictions overlapping the correct class with IoU in [0.1, 0.5), indicating poor localisation. 

• FP‑dup: duplicate predictions mapping to the same ground truth. 

• FP‑bg: confident detections with IoU < 0.1 to any ground truth, i.e. background hallucinations. 

• FN‑small: small ground truths with no matching prediction at IoU ≥ 0.5. 

• FN‑cls: IoU ≥ 0.5 matches with incorrect class labels. 

 

 The small size bin exhibits the highest error rates across all categories. False negatives dominate, 

indicating that recall on diminutive targets remains the key limitation rather than class confusion. 
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Duplicate predictions also occur more frequently for small objects, suggesting that NMS or its learned 

proxy should be tuned to avoid over‑suppression while still curbing duplicates. In rain/fog conditions, 

background hallucinations increase due to noisy textures, motivating further research into 

condition‑aware priors and feature denoising. 

4.4 Confidence calibration 

Reliable confidence scores are crucial for downstream planning and risk assessment. We measured the 

expected calibration error (ECE) and Brier score before and after applying temperature scaling. A 

disjoint calibration split (10 % of the training data) was used to fit a single temperature parameter for 

each model configuration. Table 6 and Figure 5 summarise the results. 

Model/Head ECE (pre) ECE (post) Brier (pre) Brier (post) ΔAU‑PR (p≤0.4)↑ 

v5s‑CIoU + NMS 3.2 2.5 0.086 0.072 +1.8 

v8n‑CIoU + NMS 2.6 2.0 0.080 0.068 +2.1 

v8n‑CIoU NMS‑free 2.1 1.6 0.075 0.061 +2.4 

 

Figure 5 : Calibration before and after temperature scaling 

Temperature scaling consistently reduces ECE by 0.5–0.7 percentage points and improves Brier scores. 

The NMS‑free variant starts better calibrated and ends best after scaling, supporting the hypothesis that 

one‑to‑one assignment with IoU‑aware logits encourages probabilities that reflect localisation quality. 

Improvements in ΔAU‑PR within the low‑confidence band indicate better ranking among uncertain 

predictions, which is valuable for cautious operation. For deployment, we recommend providing 

multiple operating points: (i) the threshold that maximises F1‑score, (ii) a fixed threshold (0.25) for 

comparability across studies and (iii) a calibrated threshold achieving target precision (e.g., 0.90) for 

VRUs. 

4 Discussion 

4.1 Impact of head type and IoU loss 

The ablation study reveals that anchor‑free heads (YOLOv8n) outperform anchor‑based heads 

(YOLOv5s) across all metrics. Without anchors, the model directly regresses box centres and sizes, 

reducing the need for carefully tuned anchor hyper‑parameters and enabling denser supervision. This 

aligns with observations from the literature that YOLOv8 abandons anchor‑based detection to simplify 

training and improve small‑object performance[2]. The choice of IoU loss further affects localization: 
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Complete‑IoU (CIoU) consistently yields higher mAP than Generalised IoU (GIoU) or Distance IoU 

(DIoU), supporting hypotheses that CIoU penalises both overlap and centre distance more effectively. 

4.2 Benefits of NMS‑free training 

Standard post‑processing relies on non‑maximal suppression to remove duplicate detections. However, 

NMS thresholds can suppress true positives and increase latency. Training the detection head with 

one‑to‑one assignments and IoU‑aware classification allows NMS to be removed entirely at inference. 

The NMS‑free configuration in this study not only reduces ECE by approximately 0.5 percentage points 

but also increases throughput by about 6–10 FPS compared with NMS‑based counterparts. These 

improvements come at a negligible cost to mAP when the score threshold is tuned. For autonomous 

driving, where decisions must be made in real time and confidence reliability is crucial, NMS‑free 

training offers a promising direction. 

4.3 Small‑object challenges and error taxonomy 

The size‑stratified error analysis shows that false negatives on small objects dominate the error budget 

(FN‑small = 0.264 per image). Such objects include distant pedestrians or cyclists, which are critical for 

safety yet hard to detect due to their tiny appearance. Anchor‑free heads and multi‑scale features reduce 

some errors but further improvements require dedicated small‑object branches, multi‑scale upsampling 

or transformer‑based feature fusion. The error taxonomy also reveals that false positives due to 

localization (FP‑loc) and duplicate detections (FP‑dup) are higher for small objects, suggesting that 

point‑based prediction and better box refinement can help. 

4.4 Calibration and decision quality 

Well‑calibrated confidence scores enable autonomous driving systems to set appropriate thresholds, 

combine decisions from multiple sensors and plan safe manoeuvres. Temperature scaling is a simple 

yet effective method for improving calibration; it reduced ECE by 0.5–0.7 percentage points and 

improved Brier scores across all configurations. This finding is consistent with the broader literature: 

calibration aims to align confidence with the probability of correctness[3], and post‑hoc methods such 

as temperature scaling often outperform more complex train‑time approaches[4]. Moreover, we 

observed that better‑calibrated models yield higher ΔAU‑PR in low‑confidence regions, suggesting they 

rank uncertain predictions more effectively. For AV deployment, we recommend publishing multiple 

operating points (max‑F1, fixed threshold and calibrated threshold) to allow downstream modules to 

select an appropriate trade‑off between precision and recall. 

4.5 Limitations and future work 

This research is conducted on KITTI and BDD100K validation sets and a unified training recipe. 

Real‑world driving encompasses a wider range of adverse conditions such as snow, heavy blur and 

sensor occlusions. Future work should extend the robustness suite to include these conditions and 

evaluate cross‑dataset generalisation. Calibration could be further improved using class‑conditional 

temperature scaling or selective prediction frameworks that abstain on low‑confidence detections. 

Additionally, integrating LiDAR and radar data via multi‑modal fusion and exploring 

transformer‑based architectures may enhance detection and calibration performance. 

5 Conclusion 

This paper presents a comprehensive ablation and calibration study of YOLO‑based object detectors for 

autonomous driving. By systematically varying detection head type, IoU loss and post‑processing under 

a unified training recipe and by incorporating calibration metrics and small‑object analyses, we provide 

a nuanced understanding of the trade‑offs between accuracy, efficiency and confidence reliability. The 

experiments demonstrate that an anchor‑free detection head using a Complete‑IoU loss and NMS‑free 
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training yields the best accuracy–efficiency–calibration balance, achieving 0.957 mAP@0.5, 

0.739 mAP@0.5:0.95, 2.1 % ECE and 97 FPS. Post‑hoc temperature scaling further reduces 

miscalibration and improves low‑confidence decision quality. These insights can guide the development 

of more trustworthy perception modules for autonomous vehicles. 
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